A Posteriori Error Estimation for Discontinuous Galerkin Solutions of Hyperbolic Problems

نویسندگان

  • SLIMANE ADJERID
  • KAREN D. DEVINE
  • JOSEPH E. FLAHERTY
  • LILIA KRIVODONOVA
چکیده

We analyze the spatial discretization errors associated with solutions of onedimensional hyperbolic conservation laws by discontinuous Galerkin methods in space. We show that the leading term of the spatial discretization error with piecewise polynomial approximations of degree p is proportional to a Radau polynomial of degree p+1 on each element. We also prove that the local and global discretization errors are O( x) and O( x) at the downwind point of each element. This strong superconvergence enables us to show that local and global discretization errors converge as O( x) at the remaining roots of Radau polynomial of degree p+1 on each element. Convergence of local and global discretization errors to the Radau polynomial of degree p+1 also holds for smooth solutions as p!1. These results are used to construct asymptotically correct a posteriori estimates of spatial discretization errors that are e ective for linear and nonlinear conservation laws in regions where solutions are smooth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Discontinuous Galerkin Method for Two-dimensional Hyperbolic Problems Part II: A Posteriori Error Estimation

In this manuscript we construct simple, efficient and asymptotically correct a posteriori error estimates for discontinuous finite element solutions of scalar firstorder hyperbolic partial differential problems on triangular meshes. We explicitly write the basis functions for the error spaces corresponding to several finite element spaces. The leading term of the discretization error on each tr...

متن کامل

A Posteriori Error Estimation and Mesh Adaptivity for Finite Volume and Finite Element Methods

Error representation formulas and a posteriori error estimates for numerical solutions of hyperbolic conservation laws are considered with specialized variants given for the Godunov finite volume and discontinuous Galerkin finite element methods. The error representation formulas utilize the solution of a dual problem to capture the nonlocal error behavior present in hyperbolic problems. The er...

متن کامل

Discontinuous Galerkin error estimation for linear symmetrizable hyperbolic systems

We present an a posteriori error analysis for the discontinuous Galerkin discretization error of first-order linear symmetrizable hyperbolic systems of partial differential equations with smooth solutions. We perform a local error analysis by writing the local error as a series and showing that its leading term can be expressed as a linear combination of Legendre polynomials of degree p and p +...

متن کامل

Global Convergence of a Posteriori Error Estimates for the Discontinuous Galerkin Method for One-dimensional Linear Hyperbolic Problems

In this paper we study the global convergence of the implicit residual-based a posteriori error estimates for a discontinuous Galerkin method applied to one-dimensional linear hyperbolic problems. We apply a new optimal superconvergence result [Y. Yang and C.-W. Shu, SIAM J. Numer. Anal., 50 (2012), pp. 3110-3133] to prove that, for smooth solutions, these error estimates at a fixed time conver...

متن کامل

A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems

This artic!e considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. _Veighted residual approxim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000